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Exercise 11.10 Show that Eq. (11.51) implies the following evolution
equations for n and &:

k d .
k ,d
EéQd_i =1+ M) + L@t (11.63)
Hence show that F' (Eq. 11.35) evolves by
kdF
S =S OGS ) + e - ) (1164

11.4 Rapid Distortion Theory

Figure 11.4: Sketch of trajecto-
ries (A and B) on the &n plane
for two experiments (or DNS) in
which the initial spectra are dif-

are the same. A Reynolds-stress
model yields a unique trajectory

Homogeneous turbulence can be subjected to time-dependent uniform mean

velocity gradients, the magnitude of which can be characterized by

S(t) = (28:;8)° (11.65)

(see Exercise 5.41 on page 162).5 As observed above, in turbulent-shear
flows, the turbulence-to-mean-shear time scale ratio 7S = Sk/e is typically

5Obviously a different characterization, e.g., (Q; Qij)%, is needed for solid body rota-

tion in which S;; is zero.
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in the range 3—6. In contrast, in this Section we consider the rapid distortion
limit in which Sk/e is arbitrarily large. In this limiting case, the evolution
of the turbulence is described ezactly by Rapid Distortion Theory (RDT).
RDT provides several useful insights, especially with regard to the rapid
pressure—rate-of-strain, models for which are considered in the next section.

11.4.1 Rapid Distortion Equations
In homogeneous turbulence, the fluctuating velocity evolves by (Eq. 5.138)

Du]' o 8<UJ> _ % 1 ap’

— =y, Pt I —— 11.
Dt oz; Y 0x; vV p 0x;’ (11.66)
and the Poisson equation for p' = p(™ + p(®) is (Eq. 11.9)
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On the right-hand sides of both of these equations, the first terms represent
interactions between the turbulence field u and the mean velocity gradi-
ents; whereas the second terms represent turbulence-turbulence interactions.
Given the turbulence field u(x, t) at time ¢, the turbulence-turbulence terms
are determined, and are independent of 9(U;)/dz;. On the other hand, the
mean-velocity-gradient terms scale linearly with S. Clearly, therefore, in the
rapid-distortion limit (i.e., § — 00), the terms that scale with S dominate,
all others being negligible in comparison. Hence, in this limit, Egs. (11.66)
and (11.67) reduce to the rapid distortion equations

Du; Uy 10p™
—L = — = 11.
Dt Y0n, oz’ (11.68)
and
Loy = o240 0w (11.69)
p dzj Ox; '

The deformation caused by the mean velocity gradients can be considered
in terms of the rate S(t), the amount (from time 0 to ¢)

s(t) = /OtS(t') dt', (11.70)

and the geometry of the deformation

_ 1 9{y)
Gij(t) = S@) oz,

(11.71)
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Note that both s and G;; are non-dimensional quantities. An interesting
feature of rapid distortion theory is that the turbulence field depends on
the geometry and the amount of distortion, but it is independent of the
rate S(t)—showing that the turbulent viscosity hypothesis is qualitatively
incorrect for rapid distortions (Crow 1968). To show this property of the
rapid distortion equations, we use s in place of ¢ as an independent variable,
and define

p(T) (X, t)
pS(t)

Then (when divided by §) the rapid distortion equations (Egs. 11.68 and
11.69) become

u(x,s) =u(x,t), Gij(s) =Gij(t), p(x,s)= (11.72)
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Given the initial turbulence field u(x,0) and the distortion geometry C;ij(s),
these equations can be integrated forward in s to determine the subsequent
turbulence field as a function of the amount of distortion s (independent of
S(t) and t). (Having made this observation, we revert to the more familiar
variables of Egs. 11.68 and 11.69.)

To make progress analytically with the rapid distortion equations, it is
necessary to circumvent or to solve the Poisson equation for p(").

In the first works on RDT, Prandtl (1933) and Taylor (1935b) considered
the turbulent vorticity equation (the curl of Eq. 11.68), thus eliminating p(").

For irrotational mean distortions (£2;; = 0), this vorticity equation is

Dw; _  9(U;)

5 = = w;Sij. (11.75)

Wi az; i

Thus, vortex lines (of the fluctuating vorticity field) move with, and are
stretched by, the mean velocity field; and (as in inviscid flow) the vorticity
|w]| increases in proportion to the amount of stretching.

In an axisymmetric contraction with S;; > 0, Sy = S33 = —%5’11 (see
Figs. 10.1 and 10.2 on pages 371 and 372), the vortex lines are tilted towards
the x; axis, and are stretched in the z; direction leading to an intensification
of |wi|. As a consequence (u2) and (u2) increase relative to (u?), as is
observed in Fig. 10.2.



